
Language Models in Keyboard
Emulation

Brian Roark
Oregon Health & Science
University
Portland, OR, USA
roarkb@ohsu.edu

Andrew Fowler
Oregon Health & Science
University
Portland, OR, USA
fowlera@ohsu.edu

Melanie Fried-Oken
Oregon Health & Science
University
Portland, OR, USA
friedm@ohsu.edu

Copyright is held by the author/owner(s).
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Workshop on Designing and Evaluating Text Entry Methods

Abstract
In this extended abstract, we first discuss some of our
recent work on text entry methods, which focus on
keyboard emulation interfaces within the area of
Augmentative and Alternative Communication (AAC). We
then will discuss some important considerations for the
learning and use of language models for text entry,
including questions about generative versus discriminative
modeling and word prediction/completion.

Author Keywords
language modeling, AAC, keyboard emulation, text entry

ACM Classification Keywords
I.2.7 [Artificial Intelligence]: Natural Language Processing.

General Terms
Human Factors

Recent work in text entry
Our recent work in text entry is within the context of
research on Augmentative and Alternative Communication
(AAC). In particular, we have been working on an
NIH-funded project “Translational refinement of adaptive
communication system for locked-in patients,” to develop
a brain-computer interface (BCI) for text entry by
individuals presenting with locked-in syndrome. For that
project, we have developed a BCI text entry system that
relies on language models to sequence stimuli (characters),



which are then presented to the subjects in a rapid serial
visual presentation (RSVP) paradigm [2, 7, 8]. Typing
occurs when the system detects an event related potential
(ERP) from the EEG signal – in particular the P300 –
corresponding to the presentation of the target symbol
(observed at roughly 300ms after onset of the target).
This is a broadly interdisciplinary project, including

Figure 1: Row/column scanning
on a letter grid in frequency order

experts in the following fields: speech and language
pathology and AAC; clinical use of EEG; signal processing
and pattern recognition from noisy signals; and language
modeling. As evidenced by the title of the project, this is
a user-centric project, with team members with locked-in
syndrome providing feedback on system design.

The language modeling part of this project has been
focused on questions of binary coding for keyboard
emulation using a binary switch. Using the P300 ERP as
a switch to drive text entry means that the information
derived from the system user is a binary code, much like
other binary switches widely used within AAC. This
long-standing area of AAC research [5] has its correlates
in general text entry research, such as the recent one-key
challenge of MacKenzie [6]. Within AAC, scanning
systems on grids of symbols are widespread, whereby rows
and columns are highlighted and the user types by pressing
a button when the row or column of their target symbol is
highlighted. Figure 1 shows such a typing interface.

Figure 2: Huffman scanning on a
letter grid in frequency order

Row/column scanning of this sort assigns a binary code to
each symbol in the grid. Scanning starts at the top of the
grid, and each row that does not hold the target symbol is
a zero bit; once the row is selected, column scanning
commences from left-to-right. For instance, the binary
code for the letter ‘h’ in the grid in Figure 1 is ‘001001’
(skip row 1, skip row 2, select row 3, skip column 1, skip
column 2, select column 3). Frequency ordering the grid,
as has been done for the grid in Figure 1, places the most
common symbols in the upper left-hand corner, where
they receive the shortest codes and hence can be input

more quickly. One might rely on the previously typed
context to assign the codes, however with row/column
scanning this would require dynamically re-organizing the
grid to place the symbols in the upper left-hand corner,
which imposes additional cognitive and visual scanning
overhead – to the extent that conventional wisdom is that
dynamic grid organization slows down scanning.

As an alternative to row/column scanning, we have been
pursing an approach which we call Huffman scanning
[9, 1]. In this work, we use n-gram language models,
which condition the probability of each symbol given the
previously typed symbols. Using these multinomial
models, we can then build a Huffman code, which
produces codes with the minimum expected bits [3]. We
then highlight the letters in the grid that correspond to bit
‘1’ at the current position. Figure 2 shows this sort of
scanning approach on the same grid as is used for
row/column scanning. The user focuses on the target
symbol as symbol groups of varying size are highlighted in
an optimal sequence. When the target symbol is among
those highlighted, the user selects that group, quickly
winnowing the set down to the target symbol. Since the
highlighted groups can be any subset of the grid, and can
vary according to the context, we can produce much
shorter codes than with row/column scanning without
having to reconfigure symbol positions in the grid.
Importantly, the approach takes into account the
probability of error at each bit of the code. We have
demonstrated typing speedups over row/column scanning
with this approach.

Issues in language modeling for scanning
Within the context of the BCI project mentioned in the
earlier section, as well as for general keyboard emulation
work being done by the language modeling team of that
project, there are several important issues that we have
been or are interested in investigating. At the heart of
each of these issues is the need to speed up text entry,



which is unacceptably slow for many of the individuals we
are trying to support in the AAC community: whereas
spoken language reaches more than a hundred words per
minute and an average-speed typist using standard touch
typing will achieve approximately 35 words per minute, a
user of an AAC device will typically input text in the 3-10
words per minute range. In addition, we would like to
approach these topics as optimization problems, with
well-motivated information theoretic solutions.

Generative vs discriminative
modeling
An important distinction in
natural language processing is
generative models versus
discriminative sequence models.
For example, for word tagging
tasks such as part-of-speech
tagging, generative (joint)
models like hidden Markov
models – which assign a joint
probability of hidden state
sequences and observations – are
contrasted with discriminative
(conditional) models like
conditional random fields [4],
which assign the conditional
probability of the hidden state
sequence given the observed
sequence. In language modeling,
discriminative approaches
perform parameter estimation
with a globally conditional
likelihood objective [10], leading
to models that are optimized to
disambiguate between
application-specific competitors.
For example, in speech
recognition, parameter estimation
in discriminative language
modeling occurs by looking at
the output of the baseline speech
recognizer (e.g., a conditionally
normalized word lattice) and
moving parameters so as to favor
low error rate hypotheses in the
output while penalizing higher
error rate hypotheses. Similar
approaches can be used for text
entry systems.

The row/column and Huffman scanning approaches
discussed above assign a unique binary code to each
symbol in the grid. The use of language models to assign
binary codes contrasts with more typical use of language
models to disambiguate between symbols that have been
assigned to the same key, as is typically used for predictive
text entry in mobile computing (e.g., T9). In the latter
approach, ambiguity persists and is resolved downstream;
in scanning methods, bits are provided until the symbol is
uniquely identified (e.g., at the intersection of the selected
row and column). This difference has important
ramifications for how to approach language model
parameter estimation (see the generative versus
discriminative language modeling sidebar). The key
distinction is disambiguation of competing sequences of
symbols or competing single symbols.

Language models are widely used in a number of
applications, such as automatic speech recognition,
machine translation and optical character recognition. In
these applications, the task is to transcribe or translate
entire sequences of symbols or words during decoding. At
each position in the sequence, what has come before that
word in the sequence is not known for certain. Rather,
there is typically a probability distribution over possible
previous histories, and decoding is a global inference
procedure, such as widely used Viterbi decoding.

In text entry, the system user is typically reviewing what

has been typed during typing and correcting that text
when errors arise. Hence, much more than in these other
applications, the prefix sequence is known. For the
scanning approaches, under the assumption that the typed
sequence is the intended sequence, the previously typed
sequence is fully given at each letter. For typical
predictive text entry approaches in mobile computing, the
current word is not fully known – rather, it is ambiguous
between several possibilities – but the words farther back
in the history are known. Once the current word is
completed (a space is typed), that word becomes part of
the known letter history. In either case, having relatively
high confidence in previously typed letters is a notable
difference from other language modeling applications.

Note that for scanning methods, which use language
models to assign codes to letters in a sequence, if there is
no ambiguity in what the previously typed sequence was,
then a maximum likelihood optimized generative language
model (e.g., standard relative frequency estimated n-gram
models) also optimize the conditional likelihood. In other
words, for this special case, the distinction between
generative and discriminative estimation goes away.
However, when the language model is also performing
some kind of disambiguation from among competing
sequences, then discriminative language models should
yield improvements in practice. Yet most text entry
systems continue to rely upon generative language models.

Of course, the assumption that the typed history is
“correct” is not generally true, as typed sequences often
contain unintended errors, misspellings, or deliberate
errors. Models for text entry systems should be designed
to accommodate them. One approach to this problem is
to treat it as a decoding task, retaining ambiguity in the
typed history and giving some probability mass to previous
histories containing common typographical errors and
abbreviations. In such an approach one must decide how
far back into the typed history ambiguities persist.



Practical considerations
An important question is whether
or not one’s language model
approach to text entry actually
demonstrates an improved user
experience, both in terms of
typing speedups and general
usability. A language model that
is a poor match to the user or
the context might result in
situations where effective text
entry is impeded rather than
assisted. Research has shown
that, for users of AAC, the
quality of word completion and
prediction, for example,
influences user attitude towards
making use of such utilities [11].
This would suggest that fewer
high precision predictions is a
much more effective strategy
than high recall strategies such
as always predicting the top k
completions or predictions. In
addition, effective estimation of
non-printable character
probability, e.g., probability of
word or character delete as an
option, is critical to enabling
effective repair. As noted in our
description of word prediction,
cognitive overhead must also be
carefully considered. A system
that displays word predictions,
corrects spelling, alters previously
typed characters, and changes
dynamically may well be too
much for a reasonable user to
manage. This is a particularly
important perspective when
building systems for users with
severe impairments.

Beyond text entry disambiguation, language models are
also used for word completion and prediction, in which the
language model displays the most probable words
consistent with the currently typed prefix. Because word
completions must be located and read by the user every
time they are provided, showing them every time likely
introduces unneeded cognitive load. In ambiguous
contexts, such as the beginning of a word or sentence, it
might not be useful to show any word completions.
Similarly, showing too many word completions – in any
context – can be cognitively and graphically difficult. The
pragmatic solution to this problem is to fix the maximum
number of displayed word completions, and to refrain
from showing any completions until the user is some fixed
distance into the current word (two or three letters). A
more sophisticated solution is to decide dynamically,
based on the language model word probabilities, whether
word completions should be shown, and how many to
show. With a high quality probabilistic model, it should
be possible to base interface decisions – such as when to
suggest word completions – on information-theoretic
calculations of expected utility, rather than heuristic rules
of thumb.

Acknowledgements
This research was supported in part by NIH Grant
#1R01DC009834-01. Any opinions, findings, conclusions
or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the
views of the NIH.

References
[1] Beckley, R., and Roark, B. Asynchronous fixed-grid

scanning with dynamic codes. In Proceedings of the 2nd
Workshop on Speech and Language Processing for
Assistive Technologies (SLPAT) (2011), 43–51.

[2] Hild II, K., Orhan, U., Erdogmus, D., Roark, B., Oken,
B., Purwar, S., Nezamfar, H., and Fried-Oken, M. An
ERP-based brain-computer interface for text entry using
rapid serial visual presentation and language modeling. In

Proceedings of the ACL 2011 Demo Session (2011).
[3] Huffman, D. A method for the construction of minimum

redundancy codes. In Proceedings of the IRE, vol. 40(9)
(1952), 1098–1101.

[4] Lafferty, J., McCallum, A., and Pereira, F. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the 18th
International Conference on Machine Learning (2001),
282–289.

[5] Lesher, G., Moulton, B., and Higginbotham, D.
Techniques for augmenting scanning communication.
Augmentative and Alternative Communication 14 (1998),
81–101.

[6] MacKenzie, I. The one-key challenge: Searching for a fast
one-key text entry method. In Proceedings of the ACM
Conference on Computers and Accessibility (ASSETS)
(2009), 91–98.

[7] Orhan, U., Erdogmus, D., Roark, B., Purwar, S., Hild II,
K., Oken, B., Nezamfar, H., and Fried-Oken, M. Fusion
with language models improves spelling accuracy for
ERP-based brain computer interface spellers. In
Proceedings of the 33nd Annual International Conference
of the IEEE Engineering in Medicine and Biology Society
(EMBC) (2011).

[8] Orhan, U., Hild II, K., Erdogmus, D., Roark, B., Oken,
B., and Fried-Oken, M. RSVP keyboard: an EEG based
typing interface. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (2012).

[9] Roark, B., de Villiers, J., Gibbons, C., and Fried-Oken, M.
Scanning methods and language modeling for binary
switch typing. In Proceedings of the NAACL-HLT
Workshop on Speech and Language Processing for
Assistive Technologies (SLPAT) (2010), 28–36.

[10] Roark, B., Saraclar, M., and Collins, M. Discriminative
n-gram language modeling. Computer Speech and
Language 21, 2 (2007), 373–392.

[11] Trnka, K., Yarrington, D., McCaw, J., McCoy, K., and
Pennington, C. The effects of word prediction on
communication rate for AAC. In Proceedings of
HLT-NAACL; Companion Volume, Short Papers (2007),
173–176.


	Recent work in text entry
	Issues in language modeling for scanning
	Acknowledgements
	References

